Supervised Classification:
Logistic Regression

CSE354 - Spring 2020
Special Topic in CS
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Topics we will cover

e Supervised Classification

e Goal of logistic regression

e The “loss function” -- what logistic regression tries to optimize
e Adding Multiple Features

e Training and Test Sets

e Overfitting; Role of Regularization



Supervised Classification

X - features of N observations (i.e. words)

Y - class of each of N observations

GOAL: Produce a model that outputs the most likely class y, given features x..
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Supervised Classification

Supervised Machine Learning: Build a model with examples of
outcomes (i.e. Y) that one is trying to predict.

Classification: The outcome (Y) is a discrete class (e.g. {noun, verb,
adjective, adverb}; {positive sentiment, negative sentiment}).
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i.e. given B, yield (or “predict”) the probability that A=1
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Logistic Regression

Example: Y: 1 if target is a part of a proper noun, O otherwise;
X: number of capital letters in target and surrounding words.

They attend Stony Brook University.  Next to the brook Gandalf lay thinking.

The trail was very stony.  Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.
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Example: Y: 1 if target is a part of a proper noun, 0 otherwise;
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Logistic Regression

Example: Y: 1 if target is a part of a proper noun, 0 otherwise;
X: number of capital letters in target and surrounding words.
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Logistic Regression on a single feature (x)
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Logistic Regression

Y. €{0, 1}; X can be anything numeric.
P02 Bjij

B 1 + Pot2j=1Bj%i
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We're still learning a linear
separating hyperplane, but
fitting it to a logit outcome.
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Example: Y: 1 if target is a part of a proper noun, 0 otherwise;

X1: number of capital letters in target and surrounding words.
Let's add a featurelx - does the target word start with a capital letter?

They attend Stony Brook University. Next to the brook Gandalf lay thinking.
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Machine Learning: How to setup data

m re Extram

Multiple One-hot encodings for one observation
(1) word before; (2) word after; (3) percent capital

Y

The book was Interesting so I was happy .
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Logistic Regression - Regularization
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Logistic Regression - Regularization
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Python Example



http://www3.cs.stonybrook.edu/~has/CSE392/Slides/LogisticRegressionExample.html

Overfitting (1-d non-linear example)

Degree 4
MSE = 4.32e-02(+/- 7.08e-02)




Overfitting (1-d non-linear example)

Degree 1

Degree 4
MSE = 4.08e-01(+/- 4.25e-01)

MSE = 4.32e-02(+/- 7.08e-02)

—  Model
— True function
e®e Samples

— Model
—— True function
e®g Samples

Underfit

(image credit: Scikit-learn; in practice data are rarely this clear)



Overfitting (1-d non-linear example)

Degree 15

Degree 1 Degree 4
MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.82e+08(+/- 5.47e+08)

MSE = 4.08e-01(+/- 4.25e-01)
— Model

— Model
—— True function — True function
e®g Samples

e®g Samples

—  Model
— True function

e®e Samples

Underfit Overfit

(image credit: Scikit-learn; in practice data are rarely this clear)



Logistic Regression - Regularization

x X, X S 4
0.5 “ 1
0 :
0 0
0 0
025 1 125 1 01 2 1

1.2 +|-63%, +[179%, |71, +|18%, +|-59%_ +| 19%_ < logit(Y)

-




Logistic Regression - Regularization

0.5 0
0 0.5
0 0
0 0
0.25 1

What if only 2
predictors?

- (@) O'—\ -




Logistic Regression - Regularization

X1 X X7
05 |0
0 0.5
0 0
0 0
025 |1

What if only 2

predictors?
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Logistic Regression - Regularization

Sometimes written as:

L1 Regularization - “The Lasso”
Zeros out features by adding values that keep from perfecﬂ fitting the data.

L(By, Bu, .., B X, ¥) Hp i1 — p(a;)) LY

set betas that maximize penalized L
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Logistic Regression - Regularization

Sometimes written as:

18113

L2 Regularization - “Ridge”
Shrinks features by adding values that keep from perfectly ﬁ_*ti ing the data.

m

. 1
L(S()Bl 3A’XY Hp UI — Blx:) ) ——

set betas that maximize penalized L

04 0.6
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Logistic Regression - Review

Classification: P(Y | X)

Learn logistic curve based on example data
o training + development + testing data

Set betas based on maximizing the likelihood
o “shifts” and “twists” the logistic curve
Multivariate features: One-hot encodings
Separation represented by hyperplane
Overfitting

Regularization



Example

See notebook on website.

import numpy as np t

import scipy.stats as ss

import pandas as pd #keeps

import matplotlib

import matplotlib.pyplot as plt #p

def logistic_function(x
return np.exp(x)

xpoints = np.linspace(-10, 10, 100)

plt.plot(xpoints, [logistic_function(x) for x in xpoints])

plt.plot(xpoints, [logistic_function_with_betas(x, 2, 1) for x in xpoints]) #shifts the
plt.plot(xpoints, [logistic_function_with_betas(x, © for x in xpoints])
plt.plot(xpoints, [logistic_function_with_betas(x, © 3 : ) for x in xpoints])

[<matplotlib.lines.Line2D at ©x2691f435f60>]
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http://www3.cs.stonybrook.edu/~has/CSE354/Slides/LogisticRegressionExample.html

Extra Material

One approach to finding the parameters which maximize the likelihood function...



“best fit” : whatever maximizes the likelihood function:

L(,B(), i SA‘X Y) — Hp(;zj,z-)y‘i(l _ p(xi))l—yzﬁ
i=1

pi = P(Yi = 1{X; = ¥)

To estimate 3 ,
one can use
reweighted least
squares:

(Wasserman, 2005; Li, 2010)

€

BotHB1 e

1+

set 5y = ... = 3 = 0 (remember to include an intercept)

. Calculate p; and let W be a diagonal matrix

where ("‘l("‘lll("llt\':f;- “ = [)(l — P |
Y, — pi

2. Set z; = Z(j)g l I‘{: p;i)+ —————

pi(l — pi)

3. Set 3= (XTWX) ' XxTw, / {weighted lin. reg. of Z on'Y.
. Repeat from 1 until 3 converges.




“best fit” : whatever maximizes the Iikelihood function:

BBy, Bu ey Bl ¥ ) = Hp 2V (1 — p(a;)) ¥

This is just one way of finding the betas that maximize the likelihood
function. In practice, we will use existing libraries that are fast and
support additional useful steps like regularization..

To estimate 3 , set By =...= p =0 (remember to include an intercept)
one can use 1. Calculate p; and let W be a diagonal matrix
reweighted least where element(z, 1) = pi(1 — pi).
squares. 2. Set z; = logit(p;) + )., = .
- pill = pi) i1 = pi)
3. Set 3 = l::_\'TH'_\'jl“l.\'TU':; [ {weighted lin. reg. nt Z onY.
(Wasserman, 2005; Li, 2010) . Repeat from 1 until 3 converges.




