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how?

NLP’s practical applications

● Machine translation
● Automatic speech recognition

○ Personalized assistants
○ Auto customer service

● Information Retrieval
○ Web Search
○ Question Answering

● Sentiment Analysis
● Computational Social Science
● Growing day by day

● Machine learning: 
○ Logistic regression
○ Probabilistic modeling
○ Recurrent Neural Networks
○ Transformers

● Algorithms, e.g.:
○ Graph analytics
○ Dynamic programming

● Data science
○ Hypothesis testing
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Topics we will cover

● Supervised Classification

● Goal of logistic regression

● The “loss function” -- what logistic regression tries to optimize

● Adding Multiple Features

● Training and Test Sets

● Overfitting; Role of Regularization
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 - features of N observations (i.e. words)

 - class of each of N observations

GOAL: Produce a model that outputs the most likely class yi, given features xi.
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Some function or rules 
to go from X to Y, as 
close as possible.  



Supervised Classification 
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Example:   Y: 1 if target is a part of a proper noun, 0 otherwise; 
X: number of capital letters in target and surrounding words. 
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optimal b_0, b_1 changed!
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Logistic Regression

Yi ∊ {0, 1}; X can be anything numeric. 

We’re still learning a linear 
separating hyperplane, but 
fitting it to a logit outcome. 

(https://www.linkedin.com/pulse/predicting-outcomes-pr
obabilities-logistic-regression-konstantinidis/)

=0
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Example:   Y: 1 if target is a part of a proper noun, 0 otherwise; 
X1: number of capital letters in target and surrounding words. 

Logistic Regression

x2 x1 y

1 2 1

0 1 0

0 0 0

1 6 1

1 2 1

1 1 1

X2: does the target word start with a capital letter?Let’s add a feature!
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Machine Learning: How to setup data

Data

“Corpus”

raw data:
sequences of 

characters

Feature Extraction

Multiple One-hot encodings for one observation
(1) word before; (2) word after; (3) percent capitals

Interesting

[0, 0, 0, 0, 1, 0, …, 0]k [0, …, 0, 1, 0, …, 0]k

=

[0, 0, 0, 0, 1, 0, …, 0, 0, …, 0, 1, 0, …, 0]2k

[0, 0, 0, 0, 1, 0, …, 0, 0, …, 0, 1, 0, …, 0, 

0.09]2k+1
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Python Example

http://www3.cs.stonybrook.edu/~has/CSE392/Slides/LogisticRegressionExample.html


Overfitting (1-d non-linear example)
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Logistic Regression - Regularization

L2 Regularization - “Ridge”
Shrinks features by adding values that keep from perfectly fitting the data. 

set betas that maximize penalized L

Sometimes written as: 
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Machine Learning Goal: Generalize to new data

Training Data

Testing Data

Model Does the 
model hold up?

80%

10%

10%

Development

Set 
penalty



Logistic Regression - Review

● Classification: P(Y | X)
● Learn logistic curve based on example data

○ training + development + testing data
● Set betas based on maximizing the likelihood 

○ “shifts” and “twists” the logistic curve
● Multivariate features: One-hot encodings
● Separation represented by hyperplane
● Overfitting
● Regularization



Example

See notebook on website. 

http://www3.cs.stonybrook.edu/~has/CSE354/Slides/LogisticRegressionExample.html


Extra Material

One approach to finding the parameters which maximize the likelihood function...
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Yi ∊ {0, 1}; X can be anything numeric. 

learned

Logistic Regression on a single feature (x)

HOW? Essentially, try different 
 values until “best fit” to the 

training data (example ). 

“best fit” : whatever maximizes the likelihood function: 

To estimate      , 
one can use 
reweighted least 
squares:

(Wasserman, 2005; Li, 2010)

This is just one way of finding the betas that maximize the likelihood 
function. In practice, we will use existing libraries that are fast and 
support additional useful steps like regularization.. 


